Semisimilarity for matrices over a division ring
نویسندگان
چکیده
منابع مشابه
On nest modules of matrices over division rings
Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...
متن کاملon nest modules of matrices over division rings
let $ m , n in mathbb{n}$, $d$ be a division ring, and $m_{m times n}(d)$ denote the bimodule of all $m times n$ matrices with entries from $d$. first, we characterize one-sided submodules of $m_{m times n}(d)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $d$. next, we introduce the notion of a nest module of matrices with entries from $d$. we ...
متن کاملAlgebraic G-functions Associated to Matrices over a Group-ring
Given a square matrix with elements in the group-ring of a group, one can consider the sequence formed by the trace (in the sense of the group-ring) of its powers. We prove that the corresponding generating series is an algebraic G-function (in the sense of Siegel) when the group is free of finite rank. Consequently, it follows that the norm of such elements is an exactly computable algebraic n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1981
ISSN: 0024-3795
DOI: 10.1016/0024-3795(81)90296-2